If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+3k=0
a = 4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*4}=\frac{-6}{8} =-3/4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*4}=\frac{0}{8} =0 $
| 81/2s+6=73/4 | | 16+x÷4=27 | | 4-(-3x+2)=20 | | −3.6−1.9t+1.2+5.1t=−3.6−1.9t+1.2+5.1t | | 5/7^x=5/4^x+4 | | −3.6−1.9t+1.2+5.1t= | | 5.00s=1200 | | 5w-13=67 | | x2 +9x+8=0 | | 8x+32=24 | | 10^2x+1x-2=0 | | 2y=-(y+7) | | 35-8b=2b+3(-7b+8) | | 2/b=4/b-10 | | 2x+12=7x-2 | | 7(x-2)+3=4(2x-6)-2 | | 2(7p-5)=-31+7p | | -66=3(4m+2)-8(m+5) | | -6n=-7n+3n | | 6p+7p=0 | | 54x8=628 | | 3(x+4)+6=5(x+1)-13 | | 6p-7p=0 | | 3x−2=6x−5 | | (3/44)x+1.25=5 | | D=(rR2)÷(R2+R1) | | X+2/9-x-1/3=-1 | | 5t-1=t-17÷3 | | n+5n-5=5n+2 | | (3/8)x+11/7=2 | | 900-34.5x=486 | | 780-5x=540 |